Maxwell Relations from A
Interrelated Thermodynamic Quantities

When you are not able to directly measure a given thermodynamic property, it is very useful to express it in terms of other properties.

\[dA = dU - TdS - SdT \] \hspace{1cm} \text{(general)}

for a reversible process \[dU = TdS - PdV \]

\[dA = -PdV - SdT \]

compare with the formal derivative of \(A = A(V,T) \):

\[dA = \left(\frac{\partial A}{\partial V} \right)_T \, dV + \left(\frac{\partial A}{\partial T} \right)_V \, dT \]

Thus \[\left(\frac{\partial A}{\partial V} \right)_T = -P \] and \[\left(\frac{\partial A}{\partial T} \right)_V = -S \]
Equating Key Cross Derivatives

\[
\left(\frac{\partial A}{\partial V} \right)_T = -P \quad \text{and} \quad \left(\frac{\partial A}{\partial T} \right)_V = -S
\]

As

\[
\frac{\partial}{\partial T} \left(\frac{\partial A}{\partial V} \right) = \frac{\partial}{\partial V} \left(\frac{\partial A}{\partial T} \right)
\]

equality of mixed partial derivatives

\[
\left(\frac{\partial A}{\partial V} \right)_T = -P \quad \rightarrow \quad \frac{\partial}{\partial T} \left(\frac{\partial A}{\partial V} \right) = -\left(\frac{\partial P}{\partial T} \right)_V
\]

\[
\left(\frac{\partial A}{\partial T} \right)_V = -S \quad \rightarrow \quad \frac{\partial}{\partial V} \left(\frac{\partial A}{\partial T} \right) = -\left(\frac{\partial S}{\partial V} \right)_T
\]

One of *many* Maxwell relations

\[
\left(\frac{\partial P}{\partial T} \right)_V = \left(\frac{\partial S}{\partial V} \right)_T
\]
Utility of a Maxwell Relation

\[
\left(\frac{\partial P}{\partial T} \right)_V = \left(\frac{\partial S}{\partial V} \right)_T
\]

From this Maxwell relation we can determine how \(S \) changes with \(V \) given an equation of state.

Integrate at constant \(T \):

\[
\Delta S = \int_{V_1}^{V_2} \left(\frac{\partial P}{\partial T} \right)_V \, dV
\]

Note that \(T \) is held constant during integration over \(V \).

Get \(V \) (or \(\rho \)) dependence of \(S \) from \(P-V-T \) data.

Example: Ideal gas

\[
\left(\frac{\partial P}{\partial T} \right)_V = \frac{nR}{V} \quad \Delta S = nR \int_{V_1}^{V_2} \frac{dV}{V} = nR \ln \frac{V_2}{V_1} \quad \text{(isothermal)}
\]

(a previous result derived another way, cf. Video 6.2)
Entropy of Ethane

If V_1 is chosen to be so large that a gas behaves ideally ($=V_{id}$),

$$\Delta S = S(T, V_2) - S_{(\rho \to 0)}^{id} = \int_{V_{id}}^{V_2} \left(\frac{\partial P}{\partial T} \right)_V dV \quad \text{(constant } T)$$

Ethane at 400 K

For real gases, i.e., those having no readily available, analytical equation of state, this requires data for how pressure varies with temperature over a full range of volumes (or densities, since density is equal to V^{-1})

\[\bar{S}_{(P \to 0)}^{id} [246.45 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \text{ at 1 bar (from Q!)}] \]
Internal Energy of Ethane

Differentiating $A = U - TS$ wrt V:

\[
\left(\frac{\partial A}{\partial V} \right)_T = \left(\frac{\partial U}{\partial V} \right)_T - T \left(\frac{\partial S}{\partial V} \right)_T \quad \text{(isothermal)}
\]

using \(\left(\frac{\partial P}{\partial T} \right)_V = \left(\frac{\partial S}{\partial V} \right)_T \)

and \(\left(\frac{\partial A}{\partial V} \right)_T = -P \)

\(\text{Maxwell relation} \)

\(\text{previously derived} \)

\[
\left(\frac{\partial U}{\partial V} \right)_T = -P + T \left(\frac{\partial P}{\partial T} \right)_V
\]

For real gases, i.e., those having no readily available, analytical equation of state, this again requires data for how pressure varies with temperature over a full range of volumes (although the plot here is over pressures, which are obviously readily measured for each volume)
Volume Dependence of \(A \)

\[
\left(\frac{\partial A}{\partial V} \right)_T = -P \quad \text{integrate} \quad \Delta A = -\int_{V_1}^{V_2} P \, dV \quad \text{(constant } T\text{)}
\]

Ideal gas example, \(P = \frac{nRT}{V} \):

\[
\Delta A = -nRT \int_{V_1}^{V_2} \frac{1}{V} \, dV = -nRT \ln \frac{V_2}{V_1} \quad \text{(constant } T\text{)}
\]

Compare this to a previous result for an ideal gas at constant \(T \):

\[
\Delta S = nR \ln \frac{V_2}{V_1}
\]

As expected, \(\Delta A = \Delta U - T \Delta S \) is equal simply to \(-T \Delta S \) since \(\Delta U = 0 \) at constant \(T \) for an ideal gas.