Statistical Molecular Thermodynamics

Christopher J. Cramer

Video 7.1

Entropy and Other Thermodynamic Functions
Manipulating Differentials

\[dU = \delta w_{rev} + \delta q_{rev} \]

- \(PdV \)

\[\delta q_{rev} = TdS \]

1\(^{\text{st}}\) Law + 2\(^{\text{nd}}\) Law

\[dU = TdS - PdV \]

Now, consider the total differential of \(U \) with respect to \(T \) and \(V \)

\[dU = \left(\frac{\partial U}{\partial T} \right)_V dT + \left(\frac{\partial U}{\partial V} \right)_T dV \]

\(C_V(T) \)

We can equate these two expressions for \(dU \) and solve for \(dS \)
Solution for dS

$$TdS - PdV = C_V(T)dT + \left(\frac{\partial U}{\partial V} \right)_T dV$$

Which rearranges to:

$$dS = \frac{C_V(T)}{T}dT + \frac{1}{T} \left[P + \left(\frac{\partial U}{\partial V} \right)_T \right] dV$$

Considering the total differential of S with respect to T and V

$$dS = \left(\frac{\partial S}{\partial T} \right)_V dT + \left(\frac{\partial S}{\partial V} \right)_T dV$$

We have,

$$\left(\frac{\partial S}{\partial T} \right)_V = \frac{C_V(T)}{T} \quad \text{and} \quad \left(\frac{\partial S}{\partial V} \right)_T = \frac{1}{T} \left[P + \left(\frac{\partial U}{\partial V} \right)_T \right]$$

= 0 for ideal gas
The Differential of Enthalpy

\[dH = d(U + PV) \]
\[= dU + VdP + PdV \]
\[= TdS - PdV + VdP + PdV = TdS + VdP \]

Now, consider the total differential of \(H \) with respect to \(T \) and \(P \)

\[dH = \left(\frac{\partial H}{\partial T} \right)_P \, dT + \left(\frac{\partial H}{\partial P} \right)_T \, dP \]

\(C_P(T) \rightarrow \left(\frac{\partial H}{\partial T} \right)_P \)

We can equate these two expressions for \(dH \) and solve for \(dS \)
Solution for dS

\[TdS + VdP = C_P(T)\,dT + \left(\frac{\partial H}{\partial P}\right)_T \,dP \]

Which rearranges to:

\[dS = \frac{C_P(T)}{T} \,dT + \frac{1}{T} \left[\left(\frac{\partial H}{\partial P}\right)_T - V \right] \,dP \]

Considering the total differential of S with respect to T and P

\[dS = \left(\frac{\partial S}{\partial T}\right)_P \,dT + \left(\frac{\partial S}{\partial P}\right)_T \,dP \]

We have,

\[\left(\frac{\partial S}{\partial T}\right)_P = \frac{C_P(T)}{T} \quad \text{and} \quad \left(\frac{\partial S}{\partial P}\right)_T = \frac{1}{T} \left[\left(\frac{\partial H}{\partial P}\right)_T - V \right] \]
\[\left(\frac{\partial S}{\partial T} \right)_P = \frac{C_P(T)}{T} \]

integrate with respect to \(T \) at constant \(P \) to determine entropy change with temperature change

\[\Delta S = S(T_2) - S(T_1) = \int_{T_1}^{T_2} \frac{C_P(T)}{T} dT \]

Let \(T_1 = 0 \) K

\[S(T_2) = S(0) + \int_{0}^{T_2} \frac{C_P(T)}{T} dT \]

Thus, we can calculate the entropy of a substance at any temperature \(T_2 \) if we know the entropy at 0 K and the constant pressure heat capacity.