Statistical Molecular Thermodynamics

Christopher J. Cramer

Video 6.6

Entropy and the Partition Function
Entropy: Probability Form

Recall from Video 6.4: \(S_{\text{ensemble}} = k_B \left(A \ln A - \sum_j a_j \ln a_j \right) \)

where \(A \) is the total number of systems in the ensemble, and \(a_j \) is the population of each system \(j \).

Then the average system entropy is \(S_{\text{ensemble}} / A \) and the probability \(p_j \) of choosing a system in state \(j \) is \(a_j / A \); or, \(a_j = p_j A \)

Then: \(S_{\text{ensemble}} = k_B \left(A \ln A - \sum_j p_j A \ln p_j A \right) \)

\[= k_B A \ln A - k_B A \sum_j p_j \ln p_j - k_B A \ln A \sum_j p_j \]

\[= -k_B A \sum_j p_j \ln p_j \]

\(S_{\text{system}} = -k_B \sum_j p_j \ln p_j \)
Entropy: Probability Form

\[S_{\text{system}} = -k_B \sum_j p_j \ln p_j \]

Note that L'Hôpital's rule establishes that \(\lim_{x \to 0} x \ln x = 0 \)

If all probabilities are 0 except one: \(S = 0 \)

If all probabilities are equal: \(S \) is maximized

Recall, in the \(NV\beta \) ensemble: \(p_j = \frac{e^{-\beta E_j(N,V)}}{Q(N,V,\beta)} \)

\[S = -k_B \sum_j \frac{e^{-\beta E_j}}{Q} \ln \left(\frac{e^{-\beta E_j}}{Q} \right) = -k_B \sum_j \frac{e^{-\beta E_j}}{Q} \left(-\beta E_j - \ln Q \right) \]
Entropy and the Partition Function

\[S = -k_B \sum_j e^{-\beta E_j} \left(-\beta E_j - \ln Q \right) \]

Some manipulation:

\[S = \frac{1}{T} \sum_j p_j E_j + \frac{k_B \ln Q}{Q} \sum_j e^{-\beta E_j} \]

\[= \frac{U}{T} + k_B \ln Q \]

\[= k_B T \left(\frac{\partial \ln Q}{\partial T} \right)_{N,V} + k_B \ln Q \]

\(S \) can be computed directly from partition function!
Entropy of a Monatomic Ideal Gas

\[Q = \frac{1}{N!} \left(\frac{2\pi mk_B T}{h^2} \right)^{3N/2} V^N g_{e_1}^N \]

\[\left(\frac{\partial \ln Q}{\partial T} \right)_{N,V} = \frac{3N}{2} \left(\frac{1}{T} \right) \]

\[\ln Q = N \ln \left[\left(\frac{2\pi mk_B T}{h^2} \right)^{3/2} V g_{e_1} \right] - \ln N! \]

\[= N \ln \left[\left(\frac{2\pi mk_B T}{h^2} \right)^{3/2} V g_{e_1} \right] - N \ln N + N \]

\[= N \ln \left[\left(\frac{2\pi mk_B T}{h^2} \right)^{3/2} \frac{V}{N} g_{e_1} \right] + N \]

\[S = k_B T \left(\frac{\partial \ln Q}{\partial T} \right)_{N,V} + k_B \ln Q \]
Entropy of a Monatomic Ideal Gas

\[Q = \frac{1}{N!} \left(\frac{2\pi mk_B T}{h^2} \right)^{3N/2} V^N g_{e1}^N \]

\[\ln Q = N \ln \left[\left(\frac{2\pi kmk_B T}{h^2} \right)^{3/2} V \right] + N \]

\[\left(\frac{\partial \ln Q}{\partial T} \right)_{N,V} = \frac{3N}{2} \left(\frac{1}{T} \right) \]

\[S = k_B T \left(\frac{\partial \ln Q}{\partial T} \right)_{N,V} + k_B \ln Q \]

If \(N = N_A \) (molar quantity):

\[\bar{S} = \frac{5}{2} R + R \ln \left[\left(\frac{2\pi kmk_B T}{h^2} \right)^{3/2} \frac{V g_{e1}}{N_A} \right] \]

Entropy increases with 1) increasing mass \(m \), 2) increasing temperature \(T \), 3) increasing standard-state volume \(V \), and 4) increasing electronic ground-state degeneracy \(g_{e1} \)