Statistical Molecular Thermodynamics

Christopher J. Cramer

Video 5.8

Heat Capacities
Heat Capacity is a Path Function

The *amount of energy required to raise the temperature of a substance by one degree* is different if done at constant V or constant P:

- At constant V, the energy added as heat is q_V, \((\Delta U = q_V) \)
 \[
 C_V = \left(\frac{\partial U}{\partial T} \right)_V \approx \frac{\Delta U}{\Delta T} = \frac{q_V}{\Delta T}
 \]

- At constant P, the energy added as heat is q_P, \((\Delta H = q_P) \)
 \[
 C_P = \left(\frac{\partial H}{\partial T} \right)_P \approx \frac{\Delta H}{\Delta T} = \frac{q_P}{\Delta T}
 \]
Heat Capacities of Ideal Gas

For an ideal gas: \[H = U + PV \]
\[= U + nRT \]

Differentiating: \[\frac{dH}{dT} = \frac{dU}{dT} + nR \]

For an ideal gas, \(U \) and \(H \) depend only on \(T \), not \(P \) or \(V \)

So: \[\left(\frac{\partial H}{\partial T} \right)_P = \left(\frac{\partial U}{\partial T} \right)_V + nR \]

Or: \[C_P = C_V + nR \]

Recall that for a monatomic ideal gas, \(\overline{C}_V = (3/2)R \), so the difference between \(\overline{C}_P \) and \(\overline{C}_V \) is 67% of \(\overline{C}_V \)
The difference in enthalpy at two different temperatures is determined from integration of C_P over the temperature range:

$$C_P = \left(\frac{\partial H}{\partial T} \right)_P \rightarrow dH = C_P dT \rightarrow H(T_2) - H(T_1) = \int_{T_1}^{T_2} C_P(T) dT$$

This is true only if there is no phase transition occurring between T_1 and T_2. At a phase transition, there is no change in the temperature as you add heat ($C_P \rightarrow \infty$), so one must also add any enthalpy associated with a phase change where needed:

Example: $H(T) - H(0) = \int_0^{T_{\text{fus}}} C_P^S(T') dT' + \Delta_{\text{fus}} H + \int_{T_{\text{fus}}}^{T} C_P^L(T') dT'$

Solid, from $T=0$ to $T=T_{\text{fus}}$ \hspace{1cm} Enthalpy of fusion \hspace{1cm} Liquid, from $T=T_{\text{fus}}$ to $T=T_{\text{fus}}$ to $T=T$
Enthalpy of Benzene

Benzene: $T_{\text{fus}} = 278.7\ \text{K}$, $T_{\text{vap}} = 353.2\ \text{K}$

Measuring the heat capacity, temperature by temperature

Integrating the heat capacity, adding phase changes

For $T > T_{\text{vap}}$,

$$H(T) - H(0) = \int_{0}^{T_{\text{fus}}} C_P^S(T')\,dT' + \Delta_{\text{fus}}\,H + \int_{T_{\text{fus}}}^{T_{\text{vap}}} C_P^l(T')\,dT' + \Delta_{\text{vap}}\,H + \int_{T_{\text{vap}}}^{T} C_P^g(T')\,dT'$$