Statistical Molecular Thermodynamics

Christopher J. Cramer

Video 5.4

Characteristic Ideal Gas Expansion Paths
All Reversible Roads Lead To...

\[P_1, V_1, T_1 \rightarrow P_2, V_2, T_1 \]

Path A: reversible isothermal expansion

Path B+C: reversible adiabatic expansion followed by heating at constant volume.

Path D+E: reversible constant-pressure expansion followed by cooling at constant volume.

\[\Delta U \] must be the same for all paths, but \(q \) and \(w \)?
Since the process is reversible,
\[-\delta q_{\text{rev},A} = \delta w_{\text{rev},A} = -P_{\text{gas}}\, dV = -\frac{RT_1}{V}\, dV\]

And we have,
\[-q_{\text{rev},A} = w_{\text{rev},A} = -RT_1 \int_{V_1}^{V_2} \frac{dV}{V} = -RT_1 \ln \frac{V_2}{V_1}\]

Note that heat transfer in is required to maintain temperature
Path B

\[P_1, V_1, T_1 \quad \rightarrow \quad P_3, V_2, T_2 \]

Reversible adiabatic expansion

Adiabatic means no energy is transferred as heat, i.e., \(q = 0 \), and therefore \(\Delta U = w \) and \(dU = \delta w \)

For an ideal gas, \(U \) depends only on \(T \)

\[
C_V(T) = \left(\frac{\partial U}{\partial T} \right)_V \quad \xrightarrow{\text{ideal gas}} \quad C_V(T) = \frac{dU}{dT} \quad \rightarrow \quad dU = C_V(T)dT
\]

\[w_{\text{rev}, B} = \Delta U_B = \int_{T_1}^{T_2} dU = \int_{T_1}^{T_2} C_V(T)dT \]

(from \(T_1 \) to \(T_2 \))
Path C

\[P_3, V_2, T_2 \xrightarrow{C} P_2, V_2, T_1 \]

Reversibly heat at constant volume

\[\Delta V = 0, \text{ so } w_{\text{rev,C}} = -PdV = 0 \]

That leaves only heat, i.e., \(\Delta U_C = q_{\text{rev,C}} + w_{\text{rev,C}} = q_{\text{rev,C}} + 0 \)

\[q_{\text{rev,C}} = \Delta U_C = \int_{T_2}^{T_1} C_V(T) dT \]

(from \(T_2 \) to \(T_1 \))
Paths B + C

For the sum of B + C

\[q_{\text{rev,B+C}} = q_{\text{rev,B}} + q_{\text{rev,C}} = 0 + \int_{T_2}^{T_1} C_V(T) dT \]

\[w_{\text{rev,B+C}} = w_{\text{rev,B}} + w_{\text{rev,C}} = \int_{T_1}^{T_2} C_V(T) dT + 0 \]

For the energy,

\[\Delta U_{B+C} = \Delta U_B + \Delta U_C = \int_{T_1}^{T_2} C_V(T) dT + \int_{T_2}^{T_1} C_V(T) dT = 0 \]

\(\Delta U = 0 \), the same as for path A (as must be true for a state function), but \(w_{\text{rev,A}} \neq w_{\text{rev,B+C}} \), \(q_{\text{rev,A}} \neq q_{\text{rev,B+C}} \)
Paths D + E

For the sum of D + E

\[w_{\text{rev,D+E}} = w_{\text{rev,D}} + w_{\text{rev,E}} = -P_1(V_2 - V_1) + 0 \]

\[\Delta U_{\text{D+E}} = \int_{T_1}^{T_3} C_V(T)dT + \int_{T_3}^{T_1} C_V(T)dT = 0 \]

Another illustration that it’s usually easiest to get \(q \) by difference from more easily computed \(\Delta U \) and \(w \)

So, \(q_{\text{rev,D+E}} = P_1(V_2 - V_1) \)
Comparison of Paths

\[w_{\text{rev},D+E} = -P_1(V_2 - V_1) \quad q_{\text{rev},D+E} = P_1(V_2 - V_1) \]

\[P_1, V_1, T_1 \rightarrow P_2, V_2, T_1 \]

\[w_{\text{rev},A} = -RT_1 \ln \frac{V_2}{V_1} \quad q_{\text{rev},A} = RT_1 \ln \frac{V_2}{V_1} \]

\[w_{\text{rev},B+C} = \int_{T_1}^{T_2} C_V(T) dT \quad q_{\text{rev},B+C} = \int_{T_1}^{T_2} C_V(T) dT \]

\[\Delta U = 0 \text{ for all paths (state function), but } q_{\text{rev}} \text{ and } w_{\text{rev}} \text{ differ} \]