Gaseous Equilibrium Example

Consider the reaction: \(\text{PCl}_5(g) \rightleftharpoons \text{PCl}_3(g) + \text{Cl}_2(g) \)

The equilibrium constant is \(K_P(T) = \left(\frac{P_{\text{PCl}_3} P_{\text{Cl}_2}}{P_{\text{PCl}_5}} \right)_{eq} \)

If at the start you have
- one mole of \(\text{PCl}_5(g) \)
- zero moles of \(\text{PCl}_3(g) \)
- zero moles of \(\text{Cl}_2(g) \)

then later you have
- \((1 - \xi)\) moles of \(\text{PCl}_5(g) \)
- \(\xi\) moles of \(\text{PCl}_3(g) \)
- \(\xi\) moles of \(\text{Cl}_2(g) \)

If \(\xi_{eq} \) is the extent at equilibrium,

\[
\begin{align*}
P_{\text{PCl}_3(g)} &= P_{\text{Cl}_2(g)} = \frac{\xi_{eq} P}{1 + \xi_{eq}} \\
P_{\text{PCl}_5(g)} &= \frac{(1 - \xi_{eq}) P}{1 + \xi_{eq}} \\
K_P(T) &= \left(\frac{\xi_{eq}^2}{1 - \xi_{eq}^2} \right) P
\end{align*}
\]

Reaction occurs to an extent \(\xi \)
K_P Is a Function Only of T

$K_P(T) = \frac{\xi_{eq}^2}{1 - \xi_{eq}^2} P$

So this *looks* like K_P depends not only on T, but also on the total pressure, P...

But we’ve already derived that K_P depends only on T (cf. video 12.2):

$K_P(T) = \left(\frac{P_Y^V P_Z^V}{P_A^V P_B^V} \right)_{eq}$

Evidently, since K_P is a constant at a fixed temperature, if one has a change in the total pressure, P, then there must be some concomitant change in ξ_{eq} to maintain the same value of K_P.
Self-assessment

What is the name of the principle that states that the position of an equilibrium will shift in response to a change in the reaction conditions, e.g., a change in pressure?
Self-assessment Explained

What is the name of the principle that states that the position of an equilibrium will shift in response to a change in the reaction conditions, e.g., a change in pressure?

Le Châtelier’s Principle
Shift in Equilibrium with Pressure

Having a change in pressure change the position of equilibrium is an example of **Le Châtelier’s principle**. Following a change in conditions that displaces equilibrium, a reaction will adjust to the new equilibrium state.

\[\text{PCl}_5(g) \rightleftharpoons \text{PCl}_3(g) + \text{Cl}_2(g) \]

at 200°F

A constant at constant \(T \)

\[K_p(T) = \frac{\xi_{eq}^2}{1 - \xi_{eq}^2} P \]

As \(P \) increases, \(\xi_{eq} \) must decrease.
\[dU = \delta q + \delta w \]

Next: Determining Equilibrium Constants